Estimating the Quality of Reprogrammed Cells Using ES Cell Differentiation Expression Patterns
نویسندگان
چکیده
Somatic cells can be reprogrammed to a pluripotent state by over-expression of defined factors, and pluripotency has been confirmed by the tetraploid complementation assay. However, especially in human cells, estimating the quality of Induced Pluripotent Stem Cell(iPSC) is still difficult. Here, we present a novel supervised method for the assessment of the quality of iPSCs by estimating the gene expression profile using a 2-D "Differentiation-index coordinate", which consists of two "developing lines" that reflects the directions of ES cell differentiation and the changes of cell states during differentiation. By applying a novel liner model to describe the differentiation trajectory, we transformed the ES cell differentiation time-course expression profiles to linear "developing lines"; and use these lines to construct the 2-D "Differentiation-index coordinate" of mouse and human. We compared the published gene expression profiles of iPSCs, ESCs and fibroblasts in mouse and human "Differentiation-index coordinate". Moreover, we defined the Distance index to indicate the qualities of iPS cells, which based on the projection distance of iPSCs-ESCs and iPSCs-fibroblasts. The results indicated that the "Differentiation-index coordinate" can distinguish differentiation states of the different cells types. Furthermore, by applying this method to the analysis of expression profiles in the tetraploid complementation assay, we showed that the Distance index which reflected spatial distributions correlated the pluripotency of iPSCs. We also analyzed the significantly changed gene sets of "developing lines". The results suggest that the method presented here is not only suitable for the estimation of the quality of iPS cells based on expression profiles, but also is a new approach to analyze time-resolved experimental data.
منابع مشابه
Effect of Different Concentrations of Forskolin Along with Mature Granulosa Cell Co-Culturing on Mouse Embryonic Stem Cell Differentiation into Germ-Like Cells
Background: Germ cell development processes are influenced by soluble factors and intercellular signaling events between them and the neighboring somatic cells. More insight into the molecular biology of the germ cell development from embryonic stem (ES) cells and investigation of appropriate factors, specifically those targeting differentiation process, is of great importance. In this study, w...
متن کاملI-54: New Models for Human and Mouse Genetic
The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...
متن کاملReprogramming by cytosolic extract of human embryonic stem cells improves dopaminergic differentiation potential of human adipose tissue-derived stem cells
The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity. In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepare...
متن کاملThe effect of BMP4 on mouse embryonic stem cell proliferation and differentiation into primordial germ cells
Background and Aim: Artificial gamete production from stem cells is a novel strategy for treatment of infertility. Among various stem cell sources, embryonic stem cells (ESC) can be considered as an appropriate source for in vitro formation of germ cells. In this study we evaluated the effect of BMP4 on proliferation and differentiation of mouse embryonic stem cells into primordial germ cells (...
متن کاملPancreatic Differentiation of Sox 17 Knock-in Mouse Embryonic Stem Cells in Vitro
The way to overcome current limitations in the generation of glucose-responsive insulin-producing cells is selective enrichment of the number of definitive endoderm (DE) progenitor cells. Sox17 is the marker of mesendoderm and definitive endoderm. The aim of the present research was to study the potential of Sox17 knock-in CGR8 mouse embryonic stem (ES) cells to differentiate into insulin produ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011